首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42534篇
  免费   3547篇
  国内免费   5250篇
电工技术   2092篇
技术理论   66篇
综合类   5384篇
化学工业   5882篇
金属工艺   933篇
机械仪表   2508篇
建筑科学   15494篇
矿业工程   1680篇
能源动力   1222篇
轻工业   709篇
水利工程   1933篇
石油天然气   1029篇
武器工业   736篇
无线电   1907篇
一般工业技术   4053篇
冶金工业   976篇
原子能技术   138篇
自动化技术   4589篇
  2024年   69篇
  2023年   640篇
  2022年   768篇
  2021年   1211篇
  2020年   1267篇
  2019年   954篇
  2018年   903篇
  2017年   1102篇
  2016年   1365篇
  2015年   1465篇
  2014年   3822篇
  2013年   2615篇
  2012年   3147篇
  2011年   3355篇
  2010年   2819篇
  2009年   2918篇
  2008年   2878篇
  2007年   3454篇
  2006年   3107篇
  2005年   2811篇
  2004年   2472篇
  2003年   1853篇
  2002年   1335篇
  2001年   1029篇
  2000年   854篇
  1999年   671篇
  1998年   466篇
  1997年   392篇
  1996年   324篇
  1995年   283篇
  1994年   214篇
  1993年   170篇
  1992年   146篇
  1991年   80篇
  1990年   63篇
  1989年   53篇
  1988年   42篇
  1987年   28篇
  1986年   17篇
  1985年   22篇
  1984年   30篇
  1983年   19篇
  1982年   15篇
  1981年   10篇
  1980年   14篇
  1979年   8篇
  1961年   4篇
  1958年   4篇
  1957年   6篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
Iron acquisition mediated by siderophores, high-affinity chelators for which bacteria have evolved specific synthesis and uptake mechanisms, plays a crucial role in microbiology and in host–pathogen interactions. In the ongoing fight against bacterial infections, this area has attracted biomedical interest. Beyond several approaches to interfere with siderophore-mediated iron uptake from medicinal and immunochemistry, the development of high-affinity protein scavengers that tightly complex the siderophores produced by pathogenic bacteria has appeared as a novel strategy. Such binding proteins have been engineered based on siderocalin—also known as lipocalin 2—an endogenous human scavenger of enterobactin and bacillibactin that controls the systemic spreading of commensal bacteria such as Escherichia coli. By using combinatorial protein design, siderocalin was reshaped to bind several siderophores from Pseudomonas aeruginosa and, in particular, petrobactin from Bacillus anthracis, none of which is recognized by the natural protein. Such engineered versions of siderocalin effectively suppress the growth of corresponding pathogenic bacteria by depriving them of their iron supply and offer the potential to complement antibiotic therapy in situations of acute or persistent infection.  相似文献   
42.
目前,影响海洋工程和船舶焊接结构质量的重要影响因素之一就是焊接变形,其产生的根本原因就是在焊接过程中因结构体受热不均、热梯度、残余应力等。基于此,本文对焊接变形预测的理论发展进程及其相关理论内涵进行详细阐述,并对基于神经网络的新型焊接变形预测理论的研究发展简单概述。  相似文献   
43.
44.
己二酸是合成尼龙-66和尼龙-46纤维的重要原料,并进一步用于生产许多重要的化工产品。工业上的己二酸多采用以硝酸为氧化剂的两步法合成,该工艺不仅工艺复杂,而且对设备有腐蚀作用,还会释放大量的温室气体N_2O。本文以负载型Pt/SiO_2、Fe/SiO_2和Pt-Fe/SiO_2为催化剂,采用过氧化氢和氧气为氧源,研究了环己烷一步氧化制己二酸的绿色合成路线。对催化剂进行ICP、BET比表面积、XRD、TEM等表征,结果表明,Pt-Fe/SiO_2催化剂中不存在与Pt或Fe对应的衍射峰。在最佳反应条件下,用高压釜进行了催化剂性能评价,结果表明,Pt-Fe/SiO_2催化活性略优于Pt/SiO_2和Fe/SiO_2。在环己烷转化率为28%的情况下,己二酸选择性达到33%。  相似文献   
45.
Designing crystalline solids with improved properties or performances remains a challenging task, despite great strides that have been made within the field of crystal engineering since its birth several decades ago. Herein, we are bringing examples that illustrate recent successes in taking supramolecular synthetic guidelines from the organic crystal engineering and adjusting those to metal-containing systems, particularly to the lower-dimensional ones. The versatility of calculated molecular electrostatic potential (MEP) as a new crystal engineering tool is demonstrated.  相似文献   
46.
This educational review postulates the importance of maintaining an adequate level of crystallographic education among structure-dependent scientists whose interests are not primarily in crystallography, at a time when automation and validation have made it possible to obtain high-quality structure analyses in many cases with a minimum of crystallographic background. The topics addressed are intended to form a second round of crystallographic education for a novice user whose first round involved hands-on experience with structure solution and an introduction to elementary concepts. The specific topics, chosen for their relevance as basic knowledge and their lack of emphasis in many formal treatments, are (1) crystallographic reference frames and the utility of the reciprocal cell in geometrical calculations; (2) the relationship between the two concepts that constitute our model of the crystal, namely the unit cell and the lattice; (3) the manner in which an atom is represented in concept and in practice; (4) the importance of interleaved symmetry elements required by the presence of additional symmetry on a lattice; (5) the harnessing of the natural properties of the crystalline state for the potential manipulation of properties of synthetic crystals; and (6) useful terminology for navigating a crystal structure.  相似文献   
47.
2D layered metal-halide perovskites combine efficient exciton radiative recombination in crystal interior with long-distance free-carrier conduction at layer edges, which are promising candidates for realizing high-performance photovoltaic, light-emission and photodetection devices. The anisotropic electrical conductivity in layered perovskites imposes an additional requirement of orientational control for enabling favorable charge transport. However, rational fabrication of single-crystalline nanostructures with pure crystallographic orientation is still elusive. Herein, large-scale pure (101)-orientated 2D-perovskite single-crystalline nanowire arrays are realized by combining solvent engineering with the capillary-bridge lithography technique. Ordered nucleation at liquid–air interface and unidirectional growth along the dewetting direction are demonstrated by fluorescence microscopy and grazing-incidence X-ray scattering in discrete capillary bridges. In consideration of crystal interior exhibiting high resistance arising from the serial insulating organic barriers and ultrafast dissociation of excitons to generate long-lived free carriers at layer edges, ultrasensitive photodetectors are demonstrated with average responsivity exceeding 1.1 × 104 A W−1 and detectivity exceeding 9.1 × 1015 Jones.  相似文献   
48.
In this study, chemical precipitation methods were used to obtain ceramic materials doped with magnesium ions in order to improve the regeneration properties of materials used for tissue engineering. Two different ratios of magnesium oxide were used to dope the ceramic powder, more precisely 5% and 10%. The synthesized materials were characterized to determine the calcination temperature of the precursor powder by means of thermal analysis; to determine the mineralogical composition, X-ray diffraction was employed and the scanning electron microscopy was used to determine the microstructure. To make use of these ceramics as biomaterials, viability and proliferation cell tests have been performed. Since synthetic materials have several limitations with regard to medical applications, the materials based on HAp substituted with Mg ions are a promising solution for the regeneration of bone defects because they have a similar bone structure. The presence of Mg in the material proves to be beneficial because this element plays an important role in bone cell regeneration, and more specifically, in stimulating osteoblast proliferation. The materials synthesized in this work present a suitable morphology for uses in bone regeneration because they offer to cells a friendly environment for growth and anchoring.  相似文献   
49.
The extracellular matrix (ECM) is a macromolecular network that can provide biochemical and structural support for cell adhesion and formation. It regulates cell behavior by influencing biochemical and physical cues. It is a dynamic structure whose components are modified, degraded, or deposited during connective tissue development, giving tissues strength and structural integrity. The physical properties of the natural ECM environment control the design of naturally or synthetically derived biomaterials to guide cell function in tissue engineering. Tissue engineering is an important field that explores physical cues of the ECM to produce new viable tissue for medical applications, such as in organ transplant and organ recovery. Understanding how the ECM exerts physical effects on cell behavior, when cells are seeded in synthetic ECM scaffolds, is of utmost importance. Herein we review recent findings in this area that report on cell behaviors in a variety of ECMs with different physical properties, i.e., topology, geometry, dimensionality, stiffness, and tension.  相似文献   
50.
A low temperature co-fired ceramic (LTCC) material system has been used to develop a protype field emission cathode structure for use in an experimental magnetron oscillator. The structure is designed for used with 30 gated field emission array (GFEA) die electrically connected through silver metal traces and electrical vias. To approximate a cylinder, the cathode structure (48 mm long and 13.7 mm in diameter) is comprised of 10 faceted plates which cover the GFEA dies. Slits in the facet plates allow electron injection. The GFEA die (3 mm × 8 mm) are placed in axial columns of 3 and spaced azimuthally around a cylindrical support structure in a staggered configuration resulting in 10 azimuthal locations. LTCC manufacturing techniques were developed in order to fabricate the newly designed cathode with seven layers wrapped to form the cylinder with electrical traces and vias. Two different cathode wrapping techniques and two different via filling techniques were studied and compared. Two different facet plate manufacturing techniques were studied. Finally, four different support stand configurations for firing the cylindrical structure were also compared with a square post stand having the best circularity and linearity measurements of the fired structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号